

Mapping intra-urban population densities using VHRRS data

Dakar case study

 Take advantage of extremely detailed population dataset for validation purpose
+ 1200 units with polygon geometries at admin-

± 1200 units with polygon geometries at admin-5 level ("neighborhood") for the AOI

 Implementation of the validation strategy proposed by the WorldPop project

- Finest admin level (1) used for independent validation
- Creation of new level (0) by aggregating level 1 units

- RF model trained at level 0
- Prediction at grid level (100x100m)
- Aggregation (sum) of grid-cell predictions to get population estimates for each units at level 1

- Assessment of the population densities reallocation from Level 0 to Level 1
- No validation at grid level

UNIVERSITÉ LIBRE DE BRUXELLES

8

VHR against HR

- Aim: Assessing the contribution of VHRderived information to improve population estimates at intra-urban level.
- Comparison of gridded population products derived from VHR and HR
 - Built-up mask at 10m from WP1
 - Built-up mask, LC and LU at 0.5m from WP2

UNIVERSITÉ LIBRE DE BRUXELLES

HR built-up mask

VHR built-up mask

11

VHR Land cover map

UNIVERSITÉ LIBRE DE BRUXELLES

VHR Land use map

Population estimates using HR built-up

Population estimates using VHR built-up

Population estimates using HR + VHR data

Different tests performed

Test	Input Data	RF Internal OOB Score		External Validation		
		Level 0	Level 1	%RMSE	RTAE	
А	MR-BU	NA	NA	61.00	36.7	_
В	VHR-BU	NA	NA	54.54	31.7	-13%
С	VHR-3BU	0.767	0.715	52.22	33.9	
D	VHR-LC	0.759	0.759	49.31	30.8	-16%
Е	VHR-LU	0.789	0.757	54.37	33.5	
F	MR-BU, VHR-LU	0.808	0.766	47.59	29.7	-19%
G	VHR-BU, VHR-LU	0.842	0.768	46.21	28.2	
Н	VHR-3BU, VHR-LU	0.850	0.802	45.22	28.8	
Ι	VHR-LC, VHR-LU	0.833	0.815	45.24	28.4	-23%
J	MR-BU, VHR-LC, VHR-LU	0.836	0.813	44.40	27.9	-24%

THANKS – QUESTION ?