

DATA FUSION FOR MULTI-TEMPORAL MAPPING OF BUILT-UP AREAS IN SUB-SAHARAN AFRICA

YANN FORGET ^{1,3}, MICHAL SHIMONI ³, CATHERINE LINARD ^{1,2}, JUANFRAN LOPEZ ³, AND MARIUS GILBERT ¹

¹ Spatial Epidemiology Lab, Université Libre de Bruxelles, Belgium
² Department of Geography, University of Namur, Belgium
³ Signal Image Centre, Royal Military Academy, Belgium

Urban remote sensing in Sub-Saharan Africa

- \rightarrow Lower satellite data availability
- \rightarrow Tropical climate: high cloud cover
- \rightarrow Arid climate: spectral confusion between built-up and bare soil
- \rightarrow Lack of reference datasets

Landsat data availability

- \rightarrow Landsat 8 : systematic global acquisition
- \rightarrow Landsat 7 : 12% of the acquisitions over Africa
- \rightarrow Landsat 5 : 6% of the acquisitions over Africa
- \rightarrow Many locations in Africa without any Landsat acquisition before 1998.
- \rightarrow Only 5 scenes with less than 10% cloud cover in Kinshasa

Figure 1. Spectral confusion between bare soil and built-up areas in Gao, Mali: a) VHR image of the area of interest, b) Near-infrared Landsat band.

Gao, Mali

Johannesburg, South Africa

Katsina, Nigeria

Figure 2. Inter-urban heterogeneity in Sub-Saharan Africa.

Windhoek, Namibia

Windhoek, Namibia

Figure 3. Intra-urban heterogeneity in Sub-Saharan Africa.

Urban heterogeneity

- \rightarrow A method that works for a given urban area in SSA is not guaranteed to work in another.
- → Because of the heterogeneity characterizing the urban mosaic, supervised learning is one of the most effective method.
- \rightarrow Optical sensors are not sufficient to discriminate built-up areas from bare soil.

Proposed methodology

- → Taking advantage of open-access satellite datasets, both optical and synthetic aperture radar (SAR): Landsat, ERS-1&2, Envisat, Sentinel-1.
- → Leveraging crowd-sourced geographic databases such as **OpenStreetMap** to support the training of the classification models.
- → Tested in **44 case studies** across Sub-Saharan Africa, and for five different years: 1995, 2000, 2005, 2010 and 2015.

CASE STUDIES

Bouake, Côte d'Ivoire

Antananarivo, Madagascar Bukavu, D.R. Congo Dodoma, Tanzania Ikirun, Nigeria Kabwe, Zambia Katsina, Nigeria Kisumu, Kenya Mbeya, Tanzania Nairobi, Kenya Nzerekore, Guinea Onitsha, Nigeria Pietermaritzburg, South Africa San Pedro, Côte d'Ivoire Toamasina, Madagascar Windhoek, Namibia

Chimoio, Mozambique Freetown, Sierra Leone Iringa, Tanzania Kampala, Uganda Kayamandi, South Africa Libreville, Gabon Mekele, Ethiopia Ndola, Zambia Obuasi, Ghana Ouagadougou, Burkina Faso Pietersburg, South Africa Shaki, Nigeria Tulear, Madagascar Yamoussoukro, Côte d'Ivoire

Brazzaville, Congo Dakar, Senegal Gao, Mali Johannesburg, South Africa Kaolack, Senegal Kinshasa, D.R. Congo Lusaka, Zambia Monrovia, Liberia Nelspruit, South Africa Okene, Nigeria Owo, Nigeria Saint-Louis, Senegal Tamale, Ghana Umuahia, Nigeria Ziguinchor, Senegal

DATA AVAILABILITY

Figure 4. SAR and optical imagery availability for each case study.

SAR & OPTICAL FUSION

Optical

- \rightarrow Good separation between **vegetation** and **built-up areas**.
- \rightarrow Confusion between **bare soil** and **built-up areas**.

SAR

 \rightarrow Good separation between **bare soil** and **built-up areas**.

 \rightarrow Confusion between **dense vegetation** and **built-up areas**.

SAR & OPTICAL FUSION

Figure 5. Detection of built-up areas in Gao, Mali:

a) VHR image of the area of interest, courtesy of Google Earth,

b) Normalized Difference Built-Up Index (NDBI) computed from Landsat 8 data,

c) Sentinel-1 VH backscattering

SAR & OPTICAL FUSION

Area of Interest

SAR Backscattering

Energy Texture

Mean Texture

Figure 5. GLCM textures in Nairobi, Kenya.

Supervised learning

- \rightarrow Random Forest **pixel-level supervised classification**
- \rightarrow Features: Landsat bands, SAR textures
- \rightarrow Training samples extracted from **OpenStreetMap**

Figure 6. Bytes of informations in the OSM database for each continent between 2014 and 2018.

Built-up training samples

 \rightarrow Building footprints \rightarrow Urban blocks

Non-built-up training samples

- \rightarrow Natural objects (grass, forests, s and, rocks...)
- \rightarrow Leisure objects (parks, gardens, golf courses...)
- \rightarrow Land use objects (farms, orchards, quarries...)
- \rightarrow Distance from roads and buildings

Figure 7. Urban blocks extracted from OSM in Ouagadougou, Burkina Faso.

Figure 8. Leisure, land use, and natural objects extracted from OSM in Dakar, Senegal.

Figure 9. Availability of OSM roads and building footprints in each case study.

NAIROBI, KENYA

CHIMOIO, MOZAMBIQUE

BOUAKE, CÔTE D'IVOIRE

KAMPALA, UGANDA

WINDHOEK, NAMIBIA

NZEREKORE, GUINEA

VALIDATION

Antananarivo		0.88		0.93
Bukavu		0.88	0.87	0.87
Chimoio		0.91		0.95
Dakar		0.91		0.96
Dodoma			-	0.95
Gao	0.9			0.93
Johannesburg		0.95		0.95
Kampala		0.92		0.94
Katsina	0.92			0.97
Kinshasa		0.9		0.81
Nairobi			0.97	0.95
Okene				0.97
Onitsha		_		0.96
Ouagadougou	0.94		0.94	0.95
Saint-Louis		0.97		0.98
Umuahia			_	0.94
Windhoek		0.94		0.91
	2000	2005	2010	2015

Figure 16. Validation against an independent dataset (F1-scores).

VALIDATION

Method assessment

- \rightarrow High average accuracy (0.93)
- → Lower scores in areas located in a mountainous and densely vegetated environment, e.g. Bukavu, D.R. Congo.
- \rightarrow Lower scores as we go back in time
- → Lower scores in urban areas with low data availability (satellite or OpenStreetMap)

CONCLUSION

Combining Optical and SAR data

 \rightarrow Higher data availability in tropical areas

 \rightarrow Better classification performance in arid regions

OpenStreetMap as training data

 \rightarrow Can act as a reference dataset to support the training of the classification models

 \rightarrow Open-access and growing

DATA

🏹 MAUPP Project - News Partners Team Publications Software Data -

maupp.ulb.ac.be