

DATA FUSION FOR MULTI-TEMPORAL MAPPING of Built-Up Areas in Sub-Saharan Africa

YANN FORGET^{1,3}, MICHAL SHIMONI³, CATHERINE LINARD^{1,2}, JUANFRAN LOPEZ³, AND MARIUS GILBERT¹

1 Spatial Epidemiology Lab, Université Libre de Bruxelles, Belgium 2 Department of Geography, University of Namur, Belgium 3 Signal Image Centre, Royal Military Academy, Belgium

Urban remote sensing in Sub-Saharan Africa

- \rightarrow Lower satellite data availability
- \rightarrow Tropical climate: high cloud cover
- \rightarrow Arid climate: spectral confusion between built-up and bare soil
- \rightarrow Lack of reference datasets

Landsat data availability

- \rightarrow Landsat 8 : systematic global acquisition
- \rightarrow Landsat 7 : 12\% of the acquisitions over Africa
- \rightarrow Landsat 5 : 6\% of the acquisitions over Africa
- \rightarrow Many locations in Africa without any Landsat acquisition before 1998.
- \rightarrow Only 5 scenes with less than 10% cloud cover in Kinshasa

Figure 1. Spectral confusion between bare soil and built-up areas in Gao, Mali: a) VHR image of the area of interest, b) Near-infrared Landsat band.

Gao, Mali Johannesburg, South Africa Katsina, Nigeria

Figure 2. Inter-urban heterogeneity in Sub-Saharan Africa.

Windhoek, Namibia Windhoek, Namibia

Figure 3. Intra-urban heterogeneity in Sub-Saharan Africa.

Urban heterogeneity

- \rightarrow A method that works for a given urban area in SSA is not guaranteed to work in another.
- \rightarrow Because of the heterogeneity characterizing the urban mosaic, supervised learning is one of the most effective method.
- \rightarrow Optical sensors are not sufficient to discriminate built-up areas from bare soil.

Proposed methodology

- \rightarrow Taking advantage of **open-access satellite datasets**, both optical and synthetic aperture radar (SAR): Landsat, ERS-1&2, Envisat, Sentinel-1.
- \rightarrow Leveraging crowd-sourced geographic databases such as OpenStreetMap to support the training of the classification models.
- \rightarrow Tested in 44 case studies across Sub-Saharan Africa, and for five different years: 1995, 2000, 2005, 2010 and 2015.

CASE STUDIES

Antananarivo, Madagascar Bouake, Côte d'Ivoire Brazzaville, Congo Pietermaritzburg, South Africa Pietersburg, South Africa Saint-Louis, Senegal San Pedro, Côte d'Ivoire Shaki, Nigeria Tamale, Ghana Toamasina, Madagascar Tulear, Madagascar Umuahia, Nigeria

Bukavu, D.R. Congo Chimoio, Mozambique Dakar, Senegal Dodoma, Tanzania Freetown, Sierra Leone Gao, Mali Ikirun, Nigeria Iringa, Tanzania Johannesburg, South Africa Kabwe, Zambia Kampala, Uganda Kaolack, Senegal Katsina, Nigeria Kayamandi, South Africa Kinshasa, D.R. Congo Kisumu, Kenya Libreville, Gabon Lusaka, Zambia Mbeya, Tanzania Mekele, Ethiopia Monrovia, Liberia Nairobi, Kenya Ndola, Zambia Nelspruit, South Africa Nzerekore, Guinea Obuasi, Ghana Okene, Nigeria Onitsha, Nigeria Ouagadougou, Burkina Faso Owo, Nigeria Windhoek, Namibia Yamoussoukro, Côte d'Ivoire Ziguinchor, Senegal

DATA AVAILABILITY

Figure 4. SAR and optical imagery availability for each case study.

SAR & OPTICAL FUSION

Optical

- \rightarrow Good separation between **vegetation** and **built-up areas**.
- \rightarrow Confusion between **bare soil** and **built-up areas**.

SAR

 \rightarrow Good separation between **bare soil** and **built-up areas**.

 \rightarrow Confusion between dense vegetation and built-up areas.

SAR & OPTICAL FUSION

Figure 5. Detection of built-up areas in Gao, Mali:

- a) VHR image of the area of interest, courtesy of Google Earth,
- b) Normalized Difference Built-Up Index (NDBI) computed from Landsat 8 data,
- c) Sentinel-1 VH backscattering

SAR & OPTICAL FUSION

Area of Interest SAR Backscattering Energy Texture Mean Texture

Figure 5. GLCM textures in Nairobi, Kenya.

Supervised learning

- \rightarrow Random Forest pixel-level supervised classification
- \rightarrow Features: Landsat bands, SAR textures
- \rightarrow Training samples extracted from **OpenStreetMap**

Figure 6. Bytes of informations in the OSM database for each continent between 2014 and 2018.

Built-up training samples

 \rightarrow Building footprints \rightarrow Urban blocks

Non-built-up training samples

- \rightarrow Natural objects (grass, forests, sand, rocks...)
- \rightarrow Leisure objects (parks, gardens, golf courses...)
- \rightarrow Land use objects (farms, orchards, quarries...)
- \rightarrow Distance from roads and buildings

Figure 7. Urban blocks extracted from OSM in Ouagadougou, Burkina Faso.

Figure 8. Leisure, land use, and natural objects extracted from OSM in Dakar, Senegal.

Figure 9. Availability of OSM roads and building footprints in each case study.

NAIROBI, KENYA

CHIMOIO, MOZAMBIQUE

Bouake, Côte d'Ivoire

KAMPALA, UGANDA

WINDHOEK, NAMIBIA

NZEREKORE, GUINEA

VALIDATION

Figure 16. Validation against an independent dataset (F1-scores).

Validation

Method assessment

- \rightarrow High average accuracy (0.93)
- \rightarrow Lower scores in areas located in a mountainous and densely vegetated environment, e.g. Bukavu, D.R. Congo.
- \rightarrow Lower scores as we go back in time
- \rightarrow Lower scores in urban areas with low data availability (satellite or OpenStreetMap)

CONCLUSION

Combining Optical and SAR data

 \rightarrow Higher data availability in tropical areas

 \rightarrow Better classification performance in arid regions

OpenStreetMap as training data

 \rightarrow Can act as a reference dataset to support the training of the classification models

 \rightarrow Open-access and growing

DATA

maupp.ulb.ac.be